Disteo 23 USER MANUAL

Version: 17-11

Thank you for choosing RUIDE theodolite Disteo 23. Please read the user manual carefully before use.

1. PRECAUTIONS

a. Do not collimate the objective lens directly to the sunlight without a filter.
b. Do not store the instrument in extremely high or low temperature, to avoid the sudden or great change of temperature.
c. When the instrument is not in use, store it in the case and avoid shock, dust and humidity.
d. If there is great difference between the temperature in work site and that in store place, you should leave the instrument in the case till it adapts to the temperature of environment.
e. If the instrument has not been used for a long time, you should remove the battery for separate storage. The battery should be charged once a month.
f. When transporting the instrument should be
placed in its carrying case, it is recommended that cushioned material should be used around the case for support.
g. For better accuracy, the instrument should be set up on a wooden tripod rather than an aluminum tripod.
h. Clean exposed optical parts with degreased cotton or less tissue only!
i. Clean the instrument surface with a woolen cloth after use. If it gets wet, dry it immediately.
j. Before opening, inspect the power, functions and indications of the instrument as well as its initial setting and correction parameters.
k. Unless the user is a maintenance specialist, do not attempt to disassemble the instrument by yourself even if you find the instrument abnormal.
I. Do not aim the laser beam to eyes.
m. Keep the screen clean. Do not scratch the screen with sharp objects.
MENU

1. PRECAUTIONS 1
2. PART NAMES 3
3. OPERATION 4
3.1 Keys 4
3.2 Abbreviation 5
4. ANGLE MEDASUREMENT 5
4.1 Angle 5
4.2 HSet 6
5. DISTANCE MEASUREMENT 6
5.1 Distance 6
5.2 Stake Out (S.O.) 7
5.3 Mode 7
6. AXES STAKE-OUT 8
6.1 Stake Out of One Side on the Axes 8
6.2 Stake Out of Any Point 9
7. QUICK SETTING 10
7.1 Laser Plummet 10
7.2 Laser Pointer 11
7.3 Compensation on X 11
7.4 Distance Setting 11
7.5 Backlight and Sound 11
8. SETTING 12
8.1 Unit 12
8.2 Angle 12
8.3 Distance 12
8.4 PPM 12
8.5 Power 13
9. CALIBRATION 13
9.1 Calibrate i Angle 13
9.2 Correction of Additive Constant 14
10. INFORMATION 15
10.1 Firmware Upgrade 15
10.2 Factory Mode 16
10.3 System Information 16
11. SPECIFICATION 17
12. ERROR CODE 18

2. PART NAMES

1. Collimator	2. Objective Lens
3. Focusing Screw	4. Telescope Eyepiece
5. Horizontal Tangent Screw	6. Battery
7. RS232 Interface	8. Screw and Keyboard
9. Tribrach	10. Tribrach Lock
11. Vertical Tangent Screw	

3. OPERATION

3.1 Keys

Keys	Function
\square	Shift among 3 main functions
三	Menu
0	Power
1	Number 1 Shortcut to open laser plummet
2	Number 2 Shortcut to open laser pointer
3	Number 3 Shortcut to open compensation on Axis X (N)
4	Number 4 Shortcut to open setting of distance measurement
5	Number 4 Shortcut to open setting of backlight and sound
6-9,0	Number 6, 7, 8, 9, 0
5	ESC
-	Enter
$\Delta \nabla$	Move up and down Turn page
-/.	Input - or .

3.2 Abbreviation	
VA	vertical angle
HA	horizontal angle
$\mathrm{V} \%$	shift degree and slope
$\mathrm{HL} / \mathrm{HR}$	horizontal left/right angle
VD	vertical distance
HD	horizontal distance
SD	slope distance
hPa	unit of air pressure: hectopascal
mmHg	unit of air pressure: millimeter of mercury
inHg	unit of air pressure: inch of mercury
m	unit of distance: meter
ft	unit of distance: feet
gon	unit of angle
mil	unit of angle
${ }^{\circ} \mathrm{C}$	unit of temperature: degree Celsius
${ }^{\circ} \mathrm{F}$	unit of temperature: degree Fahrenheit

4. ANGLE MEDASUREMENT

The function of angle measurement covers measuring and displaying vertical and horizontal angles (VA and HL/HR), 0 set, horizontal set (HSet), switching to slope ($\mathrm{V} \%$), switching Face Right and Face Left (R / L), etc.

4.1 Angle

Ang	Dist Axes	
UA	$=252^{\circ} 24^{\prime}$	$29^{\prime \prime}$
HR	$=39^{\circ} 39^{\prime}$	$53^{\prime \prime}$
GSet	HSet	U\%

OSet:	Set the current angle to 0°.
HSet:	Input an angle to set as the current horizontal angle.
V\%:	Shift degree and slope.
R/L:	Shift Face Left and Face Right.

4.2 HSet

Press HSet to go the screen of setting horizontal angel.
Input a value of the angle to set as the current horizontal angle. And press OK to confirm.

5. DISTANCE MEASUREMENT

The function of distance measurement covers measuring and displaying vertical distance (VD), horizontal distance (HD), slope distance (SD), stake out (S.O.), and setting of measuring mode (Mode), etc.

5.1 Distance

Aim at the center of the target prism through the optical eyepiece by adjusting the focus, and press Meas to start the distance measurement.

Ang	1515	\square
UD	:	m
HD	:	n
SD		I
Meas	S.	

Meas:	Start to measure the distance.
S.O::	Start to stake out the distance.
Mode:	Setting of the measuring mode

5.2 Stake Out (S.O.)

Input a distance to stake out. It could be a vertical distance, horizontal distance or slope distance, by pressing Shff to shift.

Shff:	shift the distance type to stake out
$\boldsymbol{A}:$	delete
S.O.:	move right Save the input value and continue to stake out.

VD:	The distance difference between the current horizontal distance and the horizontal distance about to stake out.

5.3 Mode

This setting is to change the mode of measurement.

Dist.Set】	\square
MeasMode: \mathbf{N} Times	
Times :1	
Back	0K

Display of Stake Out Result

Ang J15t Axes	\square
UD :	m
HD Dif:	m
SD	m
Heas S.0. Mode	

6. AXES STAKE-OUT

This session is to introduce the stake-out of the point by entering the offset to a baseline. There're 2 options to define the baseline. One is to define by station point and a known bearing angle ($0^{\circ} 00^{\prime} 00^{\prime \prime}$), one is to define by two new points.

Press F1 or F2 to select.

Ang \quad Dist Axes	
F1:Set Axes Side	
F2: Set On AnyPt	
F1	F2

6.1 Stake Out of One Side on the Axes

Step 1: Set the theodolite at Point A.
Step 2: Aim at the prism which is set at Point B and press OSEI to set it to 0°.

Ang	t axes \quad C
Set on A,Aim Axes Point B aset	
Hi	$39^{\circ} 39{ }^{\prime} 51^{\prime \prime}$
bSet	Mext

Step 3: Input the distance value of the line along Point A to B, and the offset value.

Ang	Dist Axes	\square
Input OffUalue, $\mathrm{A} \rightarrow \mathrm{B}$		
Line:		
0ffst 6.000 m		
	$\leftarrow \quad \rightarrow$	

Line	Offset value along the axes of Point A to B.
Offst	Offset value perpendicular to the axis.

Step 4: Press Fl to measure. Indicate the poleman to move the prism according to the indications on the screen, until all the values on the screen are 0 .

H Diff	the angle difference between the HA of Point A to staking out point and the HA of current target
$+\uparrow /-\downarrow$	offset of perpendicular to the axis
$+\mathrm{L} /-\mathrm{R}$	offset along the axis SWPt

6.2 Stake Out of Any Point

This is the stake out provided that the theodolite is set at any point outside the axis.

Select F2.

Ang \quad Dist Axes	
F1: Set Axes Side	
F2: Set On AnyPt	
F1	F2

Step 1: Measure the distance to Point A and B, then press F4 to next step.

Ang	Dist Axes
Meas Side A:Undone	
Meas Side B:Undone	
Meaf	MeaB

Step 2: Input the line and offset values, press F4 to next step.

Ang		Axes	\square
Input OffUalue, $\mathrm{A} \rightarrow \mathrm{B}$			
Line:0.096m			
Offst 0.00s			
	\leftarrow		Next

Step 3: Press F1 to measure. Indicate the poleman to move the prism according to the indications on the screen, until all the values on the screen are 0.

7. QUICK SETTING

There're 5 settings in QuickSet: laser plummet, laser pointer, compensation on X axes, distance setting, backlight and sound.

7.1 Laser Plummet

It is to open the laser plummet fast. You can also
set the brightness grade.

[L-Plummet】	\square
Status: 0n	
Brigt 1	
Back \leftarrow	OK

7.2 Laser Pointer

Press F2 to turn on laser pointer.

7.3 Compensation on X

To turn on and off the compensation on X axis, and check the tilt value.

7.4 Distance Setting

To set various settings of distance measurement.

[Dist.Set]	\square
Target	ism
PrismCons	-3¢ mm
MeasMode: N	Times
Times :1	Time
Back	OK

7.5 Backlight and Sound

To set the screen backlight, beep of pressing key, crosshair backlight.

Sound	\square
BL Mode : Doublebl	
bl Time :0ff	
KeySound:0n	
Back	OK
Sound	\square
Croshair:0n	
Ligt	
Contrast:5	
Back \leftarrow	0K

8. SETTING

It covers 5 settings: unit, angle, distance, PPM, and power.

8.1 Unit

To set the units of angle, distance, temperature and air pressure.

8.2 Angle

To set the display of vertical angle.

8.3 Distance

To set various parameters of distance.

8.4 PPM

To set parameters related to temperature and air pressure.

[PPH]	\square
Temp:	$20.0{ }^{\circ} \mathrm{C}$
Pres:	1013.2 hPa
PPM :	0.6
Back	$\rightarrow \quad \mathrm{OK}$

8.5 Power

To set parameters related to power.

SlepTime: 0 Off	
Off Time:Off	
Battery : LiCell	
Bac	OK
pTime	Time to enter to sleep mode if no operation.
Time	Time to power off if no operation.

9. CALIBRATION

This program is to calibrate the errors and correc \dagger additive constant.
Cal. \quad F1.Comp_Calibr -

9.1 Calibrate i Angle

i angle is also referred to the vertical index difference.
Step 1: On Face Left, collimate the crosshair center in a collimator, and adjust the focus until it is clear. Press OK to proceed to next step.

Step 2: Turn the theodolite to Face Right, and collimate the crosshair center in the collimator until it is clear. Press OK to proceed to next step.

Step 3: The index difference will be shown. Press OK to confirm to calibrate. Caution: If the difference is too big, it will suggest resetting the i angle. Press OK to continue, or Back to return to calibrate again.

Tips: Repeat the calibration of i angle according to 3 steps above if necessary.

9.2 Correction of Additive Constant
 Caution: Do not change the constant if unnecessary.

The additive constant is relatively stable. We suggest inspecting it once or twice a year. You can follow the following steps to do a quick inspection and correction.

Inspection

Step 1: Set the instrument on a flat ground, mark it as Point A. Along the vertical crosshair, mark Point B and C with a space of 50 m on the same line. Set reflectors on Point B and C precisely.
Step 2: Set the temperature and air pressure in the system, and measure the horizontal distances of $A B$ and $A C$ accurately.
Step 3: Set the theodolite on Point B and level it precisely. Measure the horizontal distance of $B C$ accurately.
Step 4: Now we can get the additive constant by the following formula.

$$
K=A C-(A B+B C)
$$

K should be close to 0 . If $|k|>5 \mathrm{~mm}$, the theodolite should be delivered to professional workshop which has standard alignment to calibrate.

Correction

According to the formula, input the K value in the following screen.

10. INFORMATION

Here you can upgrade firmware and check the system information.

Infol
F1.FW Upgr .
F2.Factory Mode
F3.Sys.Info

10.1 Firmware Upgrade

Firmware upgrade includes the upgrade of angle system and distance system.
It is required to connect the theodolite with computer via RS232 serial interface.

Angle Upgrade

Distance Upgrade

System Upgrade
Hold key 1, and press power to enter to system upgrade. Follow the operation on PC upgrading software.

10.2 Factory Mode

To reset to default setting. Input the password to proceed.

Restore		
Uerify		
Input	$\ldots 172$	
Back	\leftarrow	
	\rightarrow	Mext

10.3 System Information

You can check the model, serial number, product number, system version, distance version and angle version on it.

Sys.Info \quad 回	
Model	CT-623
SN	151328
DeviceID	59dcf468
Exit	Uer.
Sys.Info	
Sys 064-000060-002	
Dist 169-106	
Angl 605-624	
Exit	Info

11. SPECIFICATION

TELESCOPE	
Image	Erect
Magnification	26.5X
Aperture (telescope)	40 mm
Aperture (distance)	45 mm
Resolution	3"
Field of View	$1^{\circ} 30$ "
Min. Focusing	1.5m
Length	155mm
LASER	
Wave Length	635+20nm
Class	II
Diameter of Laser Dot	$\leq 5 \mathrm{~mm} / 100 \mathrm{~m}$
Accuracy	$\leq 10 "$
ANGLE	
Type	Absolute Encoding
Diameter of Disk	79 mm
Detecting Method	Horizontal: dual; Vertical: dual
DISTANCE	
Reflecting Target	Single Prism

Range	300m
Accuracy	$\pm(3 \mathrm{~mm}+2 \mathrm{ppm*D})$
Time	Continuous: 0.35 s ; Fine: 1.5 s
Atmospheric Correction	Manual input, auto correct.
Prism Constant Corr.	Manual input, auto correct.
LEVEL	
Plate Vial	30"/2mm
Circular Vial	8'/2mm
COMPENSATOR	
Type	Single Axis
Range	+3'
Resolution	3"
LASER PLUMMET	
Type	Class II visible red laser
Wave of Length	$635+20 \mathrm{~nm}$
Accuracy	1.5mm (when HT 1.5m)
Diameter	2.5mm (when HT 1.5m)
DISPLAY	
Type	160*96 Dot Matrix
Size	2.7 inch
POWER	

Type	Li-on
Voltage	7.4 V
Working Time	8 h
ENVIRONMENT	
Working Temperature	$-20^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$
SIZE \& WEIGHT	$165 \times 160340 \mathrm{~mm}$
Size	4.7 kg
Weight	

12. ERROR CODE

Category	Message
Angle Problem	UpperV ERR
	LowerV ERR
	HL ERR
	HR ERR
	V CCD Error
	H CCD Error
Distance Problem	V Rotate ERR
	H Rotate ERR
	ERR32
	ERR33
	ERR35
	ERR38

Restart the theodolite. If it is not solved, return to your local dealer for further inspection.

